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Abstract

An envy behavioral game theoretical model with two types of homogeneous

players is considered in this Thesis. The strategy space of each type of play-

ers is a discrete set with only two alternatives. The preferences of each type

of players is given by a discrete utility function. All envy strategies that

form Nash equilibria and the corresponding envy Nash domains for each

type of players have been characterized. We use geometry to construct two-

dimensional envy tilings where the horizontal axis reflects the preference for

players of type one, while the vertical axis reflects the preference for the

players of type two. The influence of the envy behavior parameters on the

Cartesian position of the equilibria has been studied, and in each envy tiling

we determine the envy Nash equilibria. We observe that there are 1024

combinatorial classes of envy tilings generated from envy chromosomes: 256

of them are being structurally stable while 768 are with bifurcation. We

introduce some conditions for the disparate strategies that form envy Nash

equilibria. Finally, we study the special case of the model when the envy

parameters are coinciding to one.
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Introduction

Modeling the behavior of players using game theory has been studied

intensively by Economists and Scientists. Ajzen [1] constructed the

main goal in Planned Behavior or Reasoned Action theories to under-

stand how players behavior were produced. In 2010, Brida et al. [3]

studied the characteristics of players that might affect their decisions in

a game theory model. One year later, Almeida et al. [2] studied a spe-

cial game for different types of players based on the papers introduced

by J. Cownley and M. Wooders [4]. In [6] Mousa et al. presented a

dichotomous decision model, where players choose between two alter-

native decisions and can influence the decisions of the others. Soeiro et

al. [11] presented new game theory model to understand how the soci-

eties’ behavior could affect the market shares. In [7], Mousa and Pinto

show that the pure Nash can be cohesive (all players are in favor of

making same decision) or disparate (players with the same preferences

are in favor of making an opposite decisions). For further readings in

this context, we refer the reader to [5] and [6].

In this Thesis, we will study the influence of the envy behavior for

players over the utility function of other type by extending the pure

Nash equilibria studied in the game decision model [10]. We character-

ize all the pure envy strategies that form Nash equilibria and determine
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the corresponding envy Nash domains. Pure envy strategies means the

cohesive or the disparate envy strategies. The strategies that are pure

disparate envy Nash can explain the division of the community. For a

given level of an envy behavior, we construct the corresponding geo-

metric tiling in the Cartesian xy−plan, where the horizontal axis rep-

resents the relative preference of players with type t1, and the vertical

axis represents the relative preference of players with type t2. Not-

ing that the envy Nash domains form the decision tiles, we show that

there are 1024 combinatorial classes of envy decision tilings, generated

from the horizontal envy chromosomes for players of type t1 and ver-

tical envy chromosomes for players of type t2, which demonstrates the

high complexity of human envy behavior. Furthermore, we found 256

combinatorial classes of tilings that are being structurally stable while

768 combinatorial classes have either single or double or degenerate

bifurcations. We show that the tilings connects geometrically the envy

Nash equilibria.

This Thesis is organized as follows. In chapter 1 we represent a short

basic review of game theory. In chapter 2 we review part of the game

theory model introduced for one type of players as in [9], after that we

review the decision game model with two types of players introduced

by Mousa et al. in [10]. In chapter 3 we study the influence of the envy

behavior for both types of players over the utility functions of each

other and characterize the cohesive envy Nash equilibria, the geometric

classes of pure envy Nash equilibria domains and the disparate envy

Nash equilibria as presented in [8] and we study the special case of

the model when the envy parameters are equal to one. Finally, we

represent the Conclusions.



Chapter 1

Introduction to game theory

In this chapter, we introduce some basics of Game Theory and it’s

application mainly using the book reference [12].

1.1 The structure of games

In this section, we describe the essential elements of a game following

the game theory book [12].

Definition 1.1. [12] Game theory is the process of modeling the strate-

gic interaction between two or more players in a situation that contain

a set of rules and outcomes, with the right theoretical tools in place.

Any game consists of the following formal elements:

(i) Set of players,

(ii) Strategy space for players,

(iii) A utility function or preference for players (payoff).



1.2. TYPE OF GAMES 4

There are two important concepts used to define the utility function

for each player. The first concept as introduced in [3] is what we called

the taste type, which reflects the inner characteristics of the player that

measures how much the players prefer to make a decision independently

of the other. The second concept is what we called the crowding type,

which reflects the influence of the other players over my decision.

1.2 Type of games

In this section, we explain the types of games in game theory, moreover

various types of games help to analyze various types of problems.

Definition 1.2. [12] Cooperative game theory assumes that groups of

players, called coalitions, are the units of decision-making, they have a

contractual relations and based on their contracts they make their deci-

sions or choose the strategy they want to play and this is a cooperative

behavior.

As an example of cooperative game: a group of people together are

caring out a certain project, so they cooperate between their decisions

at every step.

Definition 1.3. [12] Non-Cooperative game theory in this type of games

we treat all the players’ actions as separate player’s action. A player

action is when a person decides on his own preference, independently

of the other people presented in the same game.

Non-cooperative games refer to the games in which the players de-

cide on their own strategy to maximize their profit. As a result, non-

cooperative game theory is more common and used than cooperative

games.

1.3 Representing games

The games can be represented in two forms:
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• The normal (strategic) form.

• The extensive form.

1.3.1 The normal form game

Given a game G with two players I = {1, 2}. Let Si be the strategy

space of player i ∈ I. The strategy profile that describes strategies

for all the players in the game is a vector S = (s1, s2), where si ∈ Si

is the strategy of player i ∈ I. Let S = S1 × S2 be the set of all

strategy profiles. For each player i ∈ I, we can define the player i′s

payoff function as

Ui : Si −→ R.

Definition 1.4. [12] A game G is called normal form (or matrix form)

if it consists of a set of players, I = {1, 2, . . . , n}, strategy spaces

for each player, S1, S2, . . . , Sn and payoff functions for the players,

U1, U2, . . . , Un.

Note that, all players aim to choose the strategy that maximize

their utilities. A natural way to represent a two players normal form

game is using a bi-matrix.

Example 1.1. Consider a game with two players P1 and P2. Assume

the strategy space of player P1 is the set S1 = {A,B} and the strategy

space of player P2 is the set S2 = {O,M}. The payoffs for this game

is as given in the matrix form presented in Figure 1.1, Based on Fig-

ure 1.1: If Player P1 decides the strategy B and player P2 decides the

strategy M, then P1 gets 2 dollar and P2 gets 1 dollar as a payoff.

1.3.2 The extensive form

Definition 1.5. [12] A game in the extensive form is a tree which

consists of nodes and branches. Nodes represent places where some-

thing happens in the game (such as a decision by one of the players),
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Fig. 1.1: Normal form game.

and branches indicate the various actions that players can choose. We

represent nodes by solid circles and branches by arrows connecting the

nodes. And payoffs for each player located at each last node.

Definition 1.6. Lack of information is presented in the tree by a

dashed line connecting the two nodes. This means that the player knows

he is at one of these nodes, but he does not know which one of them.

If the game has no lack of information, then it is called with com-

plete information. Otherwise, the game is called with incomplete in-

formation.

Now, we take the following extensive form example.

Example 1.2. Consider the game in Figure 1.1. The payoff function

for this game is as given in the following extensive form presented in

Figure 1.2:

The initial node belongs to player P1, indicating that player P1

moves first. The tree as follows: player P1 chooses between A and

B, player P2 does not observe player P1 choice and then chooses be-

tween O and M . The payoffs are as specified in the tree. There

are four outcomes represented by the four terminal nodes of the tree:

(A,O), (A,M), (B,O) and (B,M). The payoffs associated with each
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Fig. 1.2: Extensive form for a game with incomplete information.

outcome respectively are as follows (1, 2), (0, 0), (0, 0) and (2, 1). If the

game is with complete information, then player P2 observes the choices

of player P1. To clarify this we introduce the following example.

Example 1.3. Consider the following extensive form

Fig. 1.3: Extensive form for a game with complete information.

• In this game: if P1 plays A, then P2 observes this and plays D to

maximize his payoff and so P1 he/she gets 3.

• In this game: if P1 plays B, then P2 observes this and plays F to
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maximize his payoff and so P1 he/she gets 0. But P1 knows if he/she

plays A, then he/she would get 3 and if he/she plays B, then he/she

would get 0. Therefore, P1 will decide A. P1 observes the choice of P1

and so P2 selects the strategy that maximizes his payoff. However, P1

knows this fact, so P1 selects strategy that maximizes his payoff, too.

So this game is with complete information. That is, P1 observes the

choice of P1 and so P2 selects the strategy that maximizes his payoff.

However, P1 knows this fact, so P1 selects strategy that maximizes his

payoff, too.

Note that, form Example 1.3 the strategy space of P1 is S1 = {A,B}
while the strategy space of P2 is S2 = {CE,CF,DE,DF}.

Fig. 1.4: The matrix form game of Example 1.3.

We remark that, the extensive form can be uniquely represented in

matrix form. However, the converse is not true. Now, we can represent

the extensive form game in Example 1.3, using the matrix form as

presented in Figure 1.4 .

Note that, the matrix form of the game represented in Example 1.1,

can have more than one extensive form as follows.

Note that in Figure 1.5, player P1 starts the game while player P2 starts

the game in Figure 1.6.
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Fig. 1.5: One possible extensive form for the matrix form game presented in Ex-

ample 1.1.

Fig. 1.6: Another possible extensive form for the matrix form game presented in

Example 1.1



1.4. DOMINANCE 10

1.4 Dominance

Each player makes his decision in the game based on the best payoff

that would be achieved. That what makes every player rational.

Definition 1.7. [12] A pure strategy si ∈ Si of player Pi, i ∈ I, is

strictly dominated if there is a strategy s̄i ∈ Si such that

Ui(s̄i, s−i)>Ui(si, s−i)

for all strategy s−i ∈ Si of the other players.

Example 1.4. Consider the following matrix form game introduced in

Figure 1.7. We now study the dominance for three strategy game.

In this game strategy N dominates strategy R for each player, since

N gives payoffs higher than strategy R. So strategy R is strictly domi-

nated by strategy N . Now, after deleting strategy R, in the new game

we see that strategy N strictly dominates strategy M for each player,

so strategy M is dominated by strategy N .

Fig. 1.7: Dominated strategies.

1.5 Nash Equilibrium

In this section, the formal definition of Nash Equilibrium will be intro-

duced together with some examples.
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Definition 1.8. [12] A strategy S∗ ∈ S is a (pure) Nash Equilibrium

if

Ui(S
∗) ≥ Ui(S), ∀i, ∀S ∈ S .

Example 1.5. Consider a game between two firms F1 and F2. Each

firm has to decide between two actions of production, A or B. The

payoff is as given in the matrix form in Figure 1.8. We see that this

game has no Nash Equilibrium.

Firm F2 can increase its payoff from 0 to 10 by adopting the ac-

tion B rather than the choice A. Thus, profile (A,A) is not a Nash

Equilibrium.

Firm F1 can increase its payoff from 0 to 10 by adopting the ac-

tion B rather than the choice A. Thus, profile (A,B) is not a Nash

Equilibrium.

Firm F1 can increase its payoff from 0 to 10 by adopting the ac-

tion A rather than the choice B. Thus, profile (B,A) is not a Nash

Equilibrium.

Firm F2 can increase its payoff from 0 to 10 by adopting the ac-

tion A rather than the choice B. Thus, profile (B,B) is not a Nash

Equilibrium.

We conclude that the game has no Nash Equilibrium.

Example 1.6. Consider the normal form game presented in Figure

1.9. We need to find the Nash equilibria strategies.

Neither player can increase its payoff by choosing a different strategy

than (C,M), so this strategy profile is a Nash Equilibrium.

Player P1 can increase its payoff from 0 to 7 by choosing the strategy

E rather than the strategy C. Thus, the profile (C,D) is not a Nash

Equilibrium.

Player P1 can increase its payoff from 0 to 5 by choosing the strategy

C rather than the strategy E. Thus, the profile (E,M) is not a Nash
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Fig. 1.8: A game with no Nash equilibrium.

Equilibrium.

Neither Player P1 nor Player P2 can increase their payoff by choos-

ing different strategy than the profile (E,D), so (E,D) is a Nash Equi-

librium. We conclude that the game has two Nash equilibria, (C,M)

and (E,D).

Fig. 1.9: A strategic game with two Nash equilibria.

Now, we find Nash equilibria for our games. In Example 1.1, the

game has two Nash equilibria, (A,O) and (B,M). In Example 1.4, the

game has one Nash Equilibrium is (N,N). In Example 1.3, the game

has also one Nash Equilibrium (A,D).



Chapter 2

Review of a decision game model

with one and two types of players

In this chapter, we review part of the game theory model introduced

by Fedaa et al. [9], and part of the game decision model introduced in

[10] by Mousa et al..

2.1 Decision game model with one type of players

The model has one type of homogeneous players i ∈ I= {1, 2, . . . ,m},
m ≥ 2. Each player has to make one decision d ∈ D = {Y,N}. We

define the preference decision vector by

(ωY , ωN)

whose coordinates ωd demonstrate how much a given player likes (ωd >

0), or dislikes (ωd < 0), or indifferent (ωd = 0) to make decision d. Note

that (ωY , ωN) indicates the taste type for the players (see [2, 6]).
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We define the preference neighbors vector by

(αY , αN)

whose coordinates αd indicate how much a given player likes (αd > 0),

or dislikes (αd < 0), or indifferent (αd = 0) to be with other players

make decision d. Note that (αY , αN) demonstrates the crowding type

of the players and whom they are in favor or not in favor to be with in

each decision (see [2, 6]).

We conclude the players’ (pure) decision by

S : I→ D

which connects to player i ∈ I his favorite decision S(i) ∈ D. Consider

S to be the set of all possible strategies S. Given any S ∈ S, we define

l = lY (S) (resp. m − l = lN = lN(S)) be the number of players that

make the decision Y (resp. N). Let O be the occupation set which

contains all possible choices of l and defined by.

O = {l : l ∈ {0, 1, 2, . . . ,m}}.

As in [10], we now also define important parameters that play a prodi-

gious role in classifying the equilibria.

Definition 2.1. The difference decision parameter of the players is

defined by

x = ωY − ωN . (2.1)

Definition 2.2. The decision parameter of the players is defined by

A = αY + αN . (2.2)

As a consequence of Definition 2.1 if x > 0, then players are in favor

to make a decision Y . If x = 0, then players are indifferent to make a

decision Y or N . If x < 0, then players are in favor to make a decision

N .
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2.2 Discrete utility functions

In this section, we represent the utility function for any player i ∈ I.

Let Ui : D × O → R be the utility function for any player i ∈ I

given by

Ui(S(i), l) =


ωY + αY (lY − 1), S(i) = Y ,

ωN + αN(lN − 1), S(i) = N ,

(2.3)

For every S ∈ S, the player i ∈ I has utility function of the form

Ui(S(i), l(S))

and the Nash equilibria domain is the set of all preferences x for which

S is a Nash Equilibrium denoted by N(S).

Following the classical definition of Nash Equilibrium introduced in

Definition 1.8, we continue to study when the cohesive strategies are

Nash Equilibrium.

2.3 Cohesive Nash Equilibrium strategies

In this section, we study the Nash domain intervals for all cohesive

strategies S ∈ S that form Nash Equilibria. As well as, we explain how

the parameters x, A and m play a significant role for characterizing the

Nash equilibria.

Definition 2.3. A cohesive strategy means all players are in favor to

make the same decision.

A cohesive strategy is described by the following map

Ck : I→ D, k ∈ {0,m}

that demonstrates for any player i ∈ I, his favorite decision. Given a

cohesive strategy Ck ∈ C = {0,m}, we note that cohesive strategies

can have two forms :
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Cm all players decide Y , i.e m = ly(Cm);

C0 all players decide N , i.e 0 = ly(C0).

As a consequence of Definition 2.3, there are only two types of cohesive

strategies: l = m in which all players are in favor to make decision Y ,

and l = 0 in which all players are in favor to make decision N . The

following result states the cohesive thresholds for this type of players

that determine the equilibria.

Lemma 2.1. [9] The cohesive strategy Cm is Nash Equilibrium iff

x ≥ −αY (m− 1)

and the cohesive strategy C0 is Nash Equilibrium iff

x ≤ αN(m− 1) .

As a result of Lemma 2.1, we represent the following definition for

the cohesive threshold.

Definition 2.4. The cohesive threshold C(Y ) and C(N) for the strate-

gies Y and N are, respectively, defined by

C(Y ) = −αY (m− 1) and C(N) = αN(m− 1) . (2.4)

We now proceed to introduce the following result.

Lemma 2.2. [9] Let C(Y ) and C(N) be the cohesive threshold for the

strategies Y and N as given in (2.4), then:

C(Y )− C(N) = −A(m− 1). (2.5)

Given a cohesive strategy CK ∈ S, where K ∈ {0,m}. Then,

(i) the cohesive strategy Cm is Nash Equilibrium if and only if x ≥
CY , and

(ii) the cohesive strategy C0 is Nash Equilibrium if and only if x ≤ CN ,
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It might be referred to the Nash equilibria interval I(Cm) by I(Y ) and

the Nash equilibria interval I(C0) by I(N). The representations of

the Nash equilibria intervals I(Y ) and I(N) along the horizontal axis

determine the decision intervals. The intersections of the intervals I(Y )

and I(N) are characterized by the way the cohesive thresholds C(Y )

and C(N) are ordered along the real line.

We now state a result concerning the non-existence of cohesive Nash

equilibria strategies.

Lemma 2.3. [9] Assume the decision parameter is such that A<0.

Then there exist a cohesive Nash equilibria strategies for every x /∈
(C(N), C(Y )).

2.4 Bifurcated thresholds

In this section, we study the order of the cohesive strategies along the

horizontal preference x-axis. Since the cohesive thresholds CY and CN

are taking real values, a bifurcation may occur. Such occurrence can

be characterized by us in the follows.

Lemma 2.4. [9] Assume the decision parameter is such that A>0.

Then there exist a cohesive Nash equilibria strategies for every x ∈
(C(Y ), C(N)).

We remark that, if the two cohesive thresholds C(Y ) and C(N) are

coinciding, then the two cohesive thresholds are in bifurcation position.

Lemma 2.5. [9] Assume the decision parameter A = 0. Then there

exist a unique cohesive Nash equilibrium for every x ∈ R\{x = C(Y ) =

C(N)}.

2.5 Split Nash Equilibrium strategies

In this section, we study the no-cohesive strategies or the split strate-

gies.
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Definition 2.5. A split strategy is a strategy in which players are in

favor to make different decisions.

The split strategy is a strategy where the players split into two

groups to make two decisions. Thus, there are (m − 1) possible split

strategies. l strategy indicates to lY players make decide Y , and so

m − lY = lN indicates players make decide N . Note that, a neces-

sary condition for the players to split between the two decisions is that

lY ∈ {1, 2, . . . ,m − 1}. Our goal determine and characterize all split

strategies that form Nash equilibria, by determining the necessary and

sufficient conditions that guarantee the existence of split Nash equilib-

ria strategies. We represent the following definition.

Definition 2.6. The left split threshold SL(lY ) for the strategies Y is

defined by

SL(lY ) = −αY (m− 1) + (αY + αN)(m− lY ) (2.6)

and the right split threshold SR(lN) for the strategies N is defined by

SR(lN) = αN(m− 1)− (αY + αN)(m− lN) . (2.7)

Now we connect the above two thresholds by the following result

which explains the cost of moving one player from one decision to

another.

Prposition 2.1. [9] Given S ∈ S for all lY = 1, 2, . . . ,m− 1 we have

SR(m−(lY−1)) = SL(lY ). Furthermore, SR(lN)−SL(lY ) = −(αY +αN)

.

See Figure 2.1 as an illustration of Lemma 2.1. Based on Figure

2.1, one can see that if lY = 1, then

SL(1) = C(N)

Moreover, we observe that

SR(m− lY + 1) = SR(m)

= αN(m− 1)

= C(N)
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Fig. 2.1: Split Nash domain when A < 0.

The following result determines the necessary conditions for a split

strategy to be Nash Equilibrium.

Lemma 2.6. [9] Let S ∈ S be a split Nash Equilibrium strategy. If

A > 0 then the players can not be split between the strategies Cm and

C0.

Now, we introduce the following characterizing result that guaran-

tees the split strategy for players to be Nash Equilibrium.

Theorem 2.7. [9] Assume S ∈ S is a split strategy. Then, S is Nash

equilibrium strategy if and only if the difference decision parameter x

is such that

x ∈ [SL(lY ), SR(lN)] .

Definition 2.7. The matching split thresholds is defined by

G(x) = (−x+ αN(m− 1))/A (2.8)

and the relative preference split thresholds is defined by

X(l) = αN(m− 1)− lA . (2.9)

Let us define also Z(x) by

Z(x) = x− αNm− αY . (2.10)
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We observe that, the map G(x) is a increasing affine functions in

x, with the property that G(C(N)) = 0 and G(C(Y )) = m − 1. Note

that

G(C(N)) = 0

G(C(N)− A) = 1

G(C(N)− 2A) = 2

G(C(N)− 3A) = 3

:

G(C(N)− (m− 1)A) = G(C(Y ))

= (m− 1).

The equality is done by using (2.5). In the following result, we show

how the split strategy l is Nash Equilibrium if and only if l ∈ [G(x), G(x)+

1] for a given preference x ∈ [C(N), C(Y )].

Note that, when x is restricted to C(N) or C(Y ), l becomes cohe-

sive.

Theorem 2.8. [9] Assume that the decision parameter A < 0. Given

the split strategy S ∈ S. The split strategy l is a Nash Equilibrium if

and only if x ∈ [X(l) + A,X(l)].

2.6 Decision game model with interactions between two

types of players

The decision model which formulated in [4] is going to be reviewed in

this section. Let T = {t1, t2} be set with two types of players, type one

has n1 players in the set I1 = {1, . . . , n1} and type two has n2 players

in the set I2 = {1, . . . , n2}. The disjoint union of I1 and I2 is given by

I1 t I2. Each player i ∈ I is assumed to choose one possible decision d

in the set D = {Y,N}.

Suppose ωd
p ∈ R describes the taste of player with type tp ∈ T

20
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choosing decision d ∈ D, so the taste matrix L is defined as

L =

(
ωY
1 ωN

1

ωY
2 ωN

2

)
.

We define Nd as the crowding matrix in which the entry αd
pq ∈ R

describes the crowding effect on player with type tp by a player with

type tq in choosing d ∈ D:

Np =

(
αd
11 αd

12

αd
21 αd

22

)
.

Each type of players who like or dislike being with in each decision

can be pointed out by the preference neighbors matrix, i.e. the players

crowding type.

The players choose their favorite (pure) decision according to the

strategy

S : I −→ D .

The strategy S indicates for each player i ∈ I, his favorite choice S(i) ∈
D. We assume S to be the set of all possible strategy S.

Under any strategy S, ldp = ldp(S) refers to the number of players

whose type is tp choosing d. We define Os as the strategic decision

matrix

Os =

(
lY1 lN1
lY2 lN2

)
.

If l1 = lY1 (S) is the number of players whose type is t1 choosing Y under

the strategy S, then l2 = lY2 (S) is the number of players whose type is

t2 choosing Y under the strategy S. Therefore, n1− l1 is the number of

players whose type is t1 choosing N under the strategy S and n2− l2 is

the number of players whose type is t2 choosing N under the strategy

S. Let O be defined by

O = {0, . . . , n1} × {0, . . . , n2}.

21
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Let U1 : D × O −→ R be the utility function of player with type t1
who makes decision Y(resp. N) given as

U1(Y ; l1, l2) = ωY
1 + αY

11(l1 − 1) + αY
12l2, (2.11)

U1(N ; l1, l2) = ωN
1 + αN

11(n1 − l1 − 1) + αN
12(n2 − l2). (2.12)

Let U2 : D × O −→ R be the utility function of player with type t2
who makes decision Y(resp. N) given as

U2(Y ; l1, l2) = ωY
2 + αY

22(l2 − 1) + αY
21l1, (2.13)

U2(N ; l1, l2) = ωN
2 + αN

22(n2 − l2 − 1) + αN
21(n1 − l1). (2.14)

Given a strategy S ∈ S, the utility Ui(S) of player i ∈ I with type tj is

given by

Uj(S(i); lY1 (S), lY2 (S)), j ∈ {1, 2}.

Definition 2.8. The horizontal taste of players with type t1 is defined

by x = ωY
1 −ωN

1 , and the vertical taste of players with type t2 is defined

by y = ωY
2 − ωN

2 .

The following explanation are considered under no influence by

other players:

• If y > 0, then players whose type is t2 are in favor to choose Y ,

• If y = 0, then players whose type is t2 are indifferent to choose

any decision,

• If y < 0, then players whose type is t2 are in favor to choose N .

Similarly, the explanation follows for the cases x > 0, x = 0, and

x < 0 for players whose type is t1.

Definition 2.9. A strategy S∗ : I −→ D is a (pure) Nash Equilibrium

iff

Ui(S
∗) ≥ Ui(S),∀i ∈ I

and for every strategy S ∈ S.

If S ∈ S is NE strategy, then N(S) is the Nash domain contains all

taste pairs (x, y) associated to this strategy.

22
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2.7 Cohesive Nash equilibria

In this section, we show how horizontal taste x and vertical tastes y

together with n1 and n2 determine the position of the NE.

A strategy where all players are in favor of choosing the same deci-

sion is called cohesive. Non-cohesive strategy is called desperate.

Under any strategy S ∈ S, we may observe the following cohesive

cases:

• (Y, Y ) profile where all players are in favor of choosing Y ,

• (Y,N) profile where players whose type t1 are in favor of choosing

Y while players whose type t2 are in favor of choosing N ,

• (N, Y ) profile where players whose type t1 are in favor of choosing

N while players whose type t2 are in favor of choosing Y ,

• (N,N) profile where all players are in favor of choosing N .

The Nash domain N(Y, Y ) is given by

N(Y, Y ) = {(x, y) : x ≥ H(Y, Y ) and y ≥ V (Y, Y )}, (2.15)

where the horizontal and vertical cut points are formed, respectively,

by

H(Y, Y ) = −αY
11(n1 − 1)− αY

12n2, (2.16)

V (Y, Y ) = −αY
22(n2 − 1)− αY

21n1.

So, a cohesive strategy (Y, Y ) is NE iff (x, y) ∈ N(Y, Y ).

To see that, the cohesive strategy (Y, Y ) is NE iff

U1(Y ;n1, n2) ≥ U1(N ;n1 − 1, n2) and (2.17)

U2(Y ;n1, n2) ≥ U2(N ;n1, n2 − 1). (2.18)
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Fig. 2.2: Cohesive Nash equilibria quadrant N(Y, Y ).

Substituting the utility functions given in (2.11) and (2.12) in inequality

(2.17) we get

ωY
1 +αY

11(n1− 1) +αY
12n2 ≥ ωN

1 +αN
11(n1− 1− (n1− 1)) +αN

12(n2−n2).

Rearrange previous inequality, we get

ωY
1 − ωN

1 ≥ −αY
11(n1 − 1)− αY

12n2.

By simplifying the previous equations, we get x ≥ H(Y, Y ). Similarly,

substituting the utility functions (2.14) and (2.13) in the inequality

(2.18), we obtain

ωY
2 +αY

22(n2− 1) +αY
21n1 ≥ ωN

2 +αN
22(n2− 1− (n2− 1)) +αN

21(n1−n1).

Rearrange the previous inequality, we get

ωY
2 − ωN

2 ≥ −αY
22(n2 − 1)− αY

21n1,

By simplifying the previous equations, we get y ≥ V (Y, Y ).

The Nash domain N(Y,N) is given by

N(Y,N) = {(x, y) : x ≥ H(Y,N) and y ≤ V (Y,N)}, (2.19)
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where the horizontal and vertical cut points are formed, respectively,

by

H(Y,N) = −αY
11(n1 − 1) + αN

12n2, (2.20)

V (Y,N) = αN
22(n2 − 1)− αY

21n1. (2.21)

So, a cohesive strategy (Y,N) is NE iff (x, y) ∈ N(Y,N). To see that,

Fig. 2.3: Cohesive Nash equilibria quadrant N(Y,N).

the cohesive strategy (Y,N) is NE iff

U1(Y ;n1, 0) ≥ U1(N ;n1 − 1, 0) and (2.22)

U2(N ;n1, 0) ≥ U2(Y ;n1, 1). (2.23)

Substituting the utility functions given in (2.11) and (2.12) in the in-

equality (2.22), we obtain

ωY
1 +αY

11(n1− 1) +αY
12(0) ≥ ωN

1 +αN
11(n1− (n1− 1)− 1) +αN

12(n2− 0).

Rearrange the previous inequality, we get

ωY
1 − ωN

1 ≥ −αY
11(n1 − 1) + αN

12n2,

which simplifies to x ≥ H(Y,N). Similarly, substituting the utility

functions (2.14) and (2.13) in the inequality (2.23), we obtain

ωN
2 + αN

22(n2 − 0− 1) + αN
21(n1 − n1) ≥ ωY

2 + αY
22(1− 1) + αY

21n1.
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Rearrange the previous inequality, we get

ωY
2 − ωN

2 ≤ αN
22(n2 − 1)− αN

21(n1),

which simplifies to y ≤ V (Y,N).

The Nash domain N(N, Y ) is given by

N(N, Y ) = {(x, y) : x ≤ H(N, Y ) and y ≥ V (N, Y )}, (2.24)

where the horizontal and vertical cut points are formed, respectively,

by

H(N, Y ) = αN
11(n1 − 1)− αY

12n2, (2.25)

V (N, Y ) = −αY
22(n2 − 1) + αN

21n1.

So, a cohesive strategy (N, Y ) is NE iff (x, y) ∈ N(N, Y ). To see that,

Fig. 2.4: Cohesive Nash equilibria quadrant N(N,Y ).

the cohesive strategy (N, Y ) is NE iff

U1(N ; 0, n2) ≥ U1(Y ; 1, n2) and (2.26)

U2(Y ; 0, n2) ≥ U2(N ; 0, n2 − 1). (2.27)

Substituting the utility functions given in (2.11) and (2.12) in the in-

equality (2.26), we obtain

ωN
1 + αN

11(n1 − 0− 1) + αN
12(n2 − n2) ≥ ωY

1 + αY
11(1− 1) + αY

12n2.
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Rearrange the previous inequality, we get

ωY
1 − ωN

1 ≤ αN
11(n1 − 1)− αY

12n2,

which simplifies to x ≤ H(N, Y ). similarly, by substituting the utility

functions (2.14) and (2.13) in the inequality (2.27), we obtain

ωY
2 + αY

22(n2 − 1) + αY
21(0) ≥ ωN

2 + αN
22(n2 − (n2 − 1)− 1) + αN

21n1.

Rearrange the previous inequality, we get

ωY
2 − ωN

2 ≥ −αN
22(n2 − 1) + αY

21n1,

which simplifies to y ≥ V (Y,N).

The Nash domain N(N,N) is given by

N(N,N) = {(x, y) : x ≤ H(N,N) and y ≤ V (N,N)}, (2.28)

where the horizontal and vertical cut points are formed, respectively,

by

H(N,N) = αN
11(n1 − 1) + αN

12n2, (2.29)

V (N,N) = αN
22(n2 − 1) + αN

21n1.

So, a cohesive strategy (N,N) is NE iff (x, y) ∈ N(N,N). To see that,

the cohesive strategy (N,N) is NE iff

U1(N ; 0, 0) ≥ U1(Y ; 1, 0) and (2.30)

U2(N ; 0, 0) ≥ U2(Y ; 0, 1). (2.31)

Substituting the utility functions given in (2.11) and(2.12) in the in-

equality (2.30), we obtain

ωN
1 + αN

11(n1 − (0)− 1) + αN
12(n2 − 0) ≤ ωY

1 + αY
11(1− 1) + αY

12(0).

Rearrange the previous inequality, we get

ωY
1 − ωN

1 ≤ αN
11(n1 − 1) + αN

12n2,

which simplifies to x ≤ H(N,N). Similarly, substituting the utility

functions (2.14) and (2.13) in the inequality (2.31), we obtain

ωN
2 + αN

22(n2 − 0− 1) + αN
21(n1) ≥ ωY

2 + αY
22(1− 1) + αY

21(0).
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Fig. 2.5: Cohesive Nash equilibria quadrant N(N,N).

Rearrange the previous inequality, we get

ωY
2 − ωN

2 ≤ αN
22(n2 − 1) + αY

21n1,

which simplifies to y ≤ V (N,N).

2.8 Split Nash equilibria

Under any strategy S ∈ S. Recall l1(S) = l1 and l2(S) = l2. The

strategy profile (l1, l2) is cohesive iff l1 ∈ {0, n1} and l2 ∈ {0, n2}. If

l1 ∈ {1, 2, . . . , n1 − 1} or l2 ∈ {1, 2, . . . , n2 − 1}, then (l1, l2) is split

strategy profile. More case of split occur when l1 ∈ {0, n1} but l2 /∈
{0, n2} or when l2 ∈ {0, n2} but l1 /∈ {0, n1}.

Definition 2.10. Let A be the influence crowding matrix:

A =

(
A11 A12

A21 A22

)

=

(
αY
11 + αN

11 αY
12 + αN

12

αY
21 + αN

21 αY
22 + αN

22

)
.
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Given a strategy decision S ∈ S. The (pure) Nash region N(l1, l2)

consists of all tastes (x, y) that guarantee the strategy profile (l1, l2) to

be NE. We now proceed to the following result.

Lemma 2.9. [9] Assume (l1, l2) is NE.

(i) If A11 > 0, then l1 ∈ {0, n1}.

(ii) If A22 > 0, then l2 ∈ {0, n2}.

Furthermore, if A11 and A22 are both positive, then (l1, l2) is cohesive.

29



Chapter 3

Characterizing the geometry of

envy human behavior using game

theoretical model with two types of

homogeneous players

In this chapter, we model the influence of envy behavior created by

both types of players over the utility function of each other and study

how this influence changes the Cartesian position of the Nash equilibria

studied in [8].

Let βi>0, i = 1, 2 be the envy parameter associated with players of

type ti. We remark that, β1 (resp. β2) measures the influence of the

envy behavior created by players with type t1 (resp. t2) over the utility

function of players with type t2 (resp. t1). Furthermore, we assume

that β1 and β2 do not depend on the decision d which has been made by

players with type t1 and t2, respectively. However, a general framework

includes such dependence could be studied in a different model.

Let Ue
1 : D×O×R+ −→ R be the utility function of an envy player



3.1. GEOMETRY OF PURE ENVY NASH EQUILIBRIA 31

with type t1 who makes decision Y given by

Ue
1 (Y ; l1, l2, β1) < U1(Y ; l1, l2)− β1U2(Y ; l1, l2)

= ωY
1 + αY

11(l1 − 1) + αY
12l2 (3.1)

−β1(ωY
2 + αY

22(l2 − 1) + αY
21l1)

and let Ue
1 : D × O × R+ −→ R be the utility function of an envy

player with type t1 who makes decision N given by

Ue
1 (N ; l1, l2, β1) = U1(N ; l1, l2)− β1U2(N ; l1, l2)

= ωN
1 + αN

11(n1 − l1 − 1) + αN
12(n2 − l2) (3.2)

−β1(ωN
2 + αN

22(n2 − l2 − 1) + αN
21(n1 − l1))

Let Ue
2 : D ×O × R+ −→ R be the utility function of an envy player

with type t2 who makes decision Y given by

Ue
2 (Y ; l1, l2, β2) = U2(Y ; l1, l2)− β2U1(Y ; l1, l2)

= ωY
2 + αY

22(l2 − 1) + αY
21l1 (3.3)

−β2(ωY
1 + αY

11(l1 − 1) + αY
12l2)

and let Ue
2 : D × O × R+ −→ R be the utility function of an envy

player with type t2 who makes decision N given by

Ue
2 (N ; l1, l2, β2) = U2(N ; l1, l2)− β2U1(N ; l1, l2)

= ωN
2 + αN

22(n2 − l2 − 1) + αN
21(n1 − l1) (3.4)

−β2(ωN
1 + αN

11(n1 − l1 − 1) + αN
12(n2 − l2)),

where the utility functions Ui(d; l1, l2), i = 1, 2 and d ∈ D are as given

in (2.11),(2.12),(2.14) and (2.13). We remark that, if β1 = β2 = 0, then

the envy model coincides with the decision model presented in [10].

3.1 Geometry of pure envy Nash equilibria

In this section, we study how the horizontal and vertical tastes x and

y, the coefficients of the crowding matrix A together with n1 and n2

determine the cohesive ENE (Envy Nash Equilibria).
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Definition 3.1. A strategy S∗e : I −→ D is a (pure) ENE iff

Ui(S
∗
e) ≥ Ui(S) ∀i ∈ I

and for every strategy S ∈ S.

The envy Nash domain Ne(S) of a strategy S ∈ S contains all taste

pairs (x, y) that guarantee the strategy S is an envy Nash Equilibrium.

Definition 3.2. A (pure) envy strategy where all players are in favor

of choosing same decision is called envy cohesive strategy. A (pure)

envy strategy that is not cohesive is called envy desperate strategy.

We observe that there are four distinct envy cohesive strategies.

We now construct the envy Nash domains Ne(Se) for each pure envy

strategy Se ∈ S. The four envy Nash domains are Ne(Y, Y ), Ne(Y,N),

Ne(N, Y ) and Ne(N,N).

Theorem 3.1. Assume that β1β2<1.

(i) The envy cohesive strategy Se = (Y, Y ) is ENE iff (x, y) ∈ Ne(Y, Y ),

the envy Nash region Ne(Y, Y ) is

Ne(Y, Y ) = {(x, y) ∈ R2 : x ≥ He(Y, Y ) and y ≥ V e(Y, Y )}, (3.5)

and the horizontal envy and vertical envy cut points are formed,

respectively, by

He(Y, Y ) = H(Y, Y ) + β1

[
αN
22 − αN

21 + β2(α
N
11 − αN

12)

1− β1β2

]
(3.6)

V e(Y, Y ) = V (Y, Y ) + β2

[
β1(α

N
22 − αN

21) + αN
11 − αN

12

1− β1β2

]
,

where the cut points H(Y, Y ) and V (Y, Y ) are as given in the second

inequality of (2.16).

(ii) The envy cohesive strategy Se = (Y,N) is ENE iff (x, y) ∈ Ne(Y,N),

the envy Nash region Ne(Y,N) is

Ne(Y,N) = {(x, y) : x ≥ He(Y,N) and y ≤ V e(Y,N)} (3.7)
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and the horizontal envy and vertical envy cut points are formed,

respectively, by

He(Y,N) = H(Y,N) + β1

[
β2(α

N
11 + αY

12)− (αY
22 + αN

21)

1− β1β2

]
(3.8)

V e(Y,N) = V (Y,N) + β2

[
αN
11 + αY

12 − β1(αY
22 + αN

21)

1− β1β2

]
,

where the cut points H(Y,N) and V (Y,N) are as given in the inequality

(2.21).

(iii) The envy cohesive strategy Se = (N, Y ) is ENE iff (x, y) ∈ Ne(N, Y ),

the envy Nash region Ne(N, Y ) is

Ne(N, Y ) = {(x, y) : x ≤ He(N, Y ) and y ≥ V e(N, Y )} (3.9)

and the horizontal envy and vertical envy cut points are formed,

respectively, by

He(N, Y ) = H(N, Y ) + β1

[
αN
22 + αY

21 − β2(αY
11 + αN

12)

1− β1β2

]
(3.10)

V e(N, Y ) = V (N, Y ) + β2

[
β1(α

N
22 + αY

21)− (αY
11 + αN

12)

1− β1β2

]
,

where the cut points H(N, Y ) and V (N, Y ) are as given in the second

inequality(2.25).

(iv) The envy cohesive strategy Se = (N,N) is ENE iff (x, y) ∈ Ne(N,N),

the envy Nash region Ne(N,N) is

Ne(N,N) = {(x, y) : x ≤ He(N,N) and y ≤ V e(N,N)}, (3.11)

and the horizontal envy and vertical envy cut points are formed,

respectively, by

He(N,N) = H(N,N) + β1

[
αY
21 − αY

22 + β2(α
Y
12 − αY

11)

1− β1β2

]
(3.12)

V e(N,N) = V (N,N) + β2

[
β1(α

Y
21 − αY

22) + αY
12 − αY

11

1− β1β2

]
,
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where the cut points H(N,N) and V (N,N) are as given in the second

inequality of (2.29).

Proof. It is enough to prove cases (i)-(ii). The cohesive envy strategy

Se = (Y, Y ) is ENE iff

U1(Y
e;n1, n2, β1) ≥ U1(N

e;n1 − 1, n2, β1) and

U2(Y
e;n1, n2, β2) ≥ U2(N

e;n1, n2 − 1, β2). (3.13)

Substituting the envy utility functions in the first inequality of (3.13),

we obtain

ωY
1 + αY

11(n1 − 1) + αY
12n2 − β1(ωY

2 + αY
22(n2 − 1) + αY

21n1) ≥
ωN
1 + αN

11(n1 − 1− (n1 − 1)) + αN
12(n2 − n2)

−β1[ωN
2 + αN

22(n2 − n2 − 1) + αN
21(n1 − (n1 − 1))]

Rearrange the above inequality, we get

ωY
1 − ωN

1 − β1ωY
2 + β1ω

N
2 ≥ − αY

11(n1 − 1)− αY
12n2

+ β1[α
Y
22(n2 − 1) + αY

21n1 + αN
22 − αN

21].

By simplifying the previous equations, we get

x− β1y ≥ − αY
11(n1 − 1)− αY

12n2 (3.14)

+ β1[α
Y
22(n2 − 1) + αY

21n1 + αN
22 − αN

21].

Similarly, substituting the utility functions in the second inequality of

(3.13), we obtain

ωY
2 + αY

22(n2 − 1) + αY
21n1 − β2(ωY

1 + αY
11(n1 − 1) + αY

12n2) ≥
ωN
2 + αN

22(n2 − 1− (n2 − 1)) + αN
21(n1 − n1)

−β2[ωN
1 + αN

11(n1 − n1 − 1) + αN
12(n2 − (n2 − 1))].

Rearrange the above inequality, we get

ωY
2 − ωN

2 − β2ωY
1 + β2ω

N
1 ≥ − αY

22(n2 − 1)− αY
21n1

+ β2(α
Y
11(n1 − 1) + αY

12n2 + αN
11 + αN

12).
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By simplifying the previous equations, we get

y − β2x ≥ −αY
22(n2 − 1)− αY

21n1 (3.15)

+β2(α
Y
11(n1 − 1) + αY

12n2 + αN
11 + αN

12).

We multiply (3.15) by β1, then subtract (3.15) from (3.14), we get

x(1− β1β2) ≥ (−αY
11(n1 − 1)− αY

12n2)(1− β1β2)
+β1

[
αN
22 − αN

21 + β2(α
N
11 − αN

12)
]
. (3.16)

Substituting the envy utility functions from (3.1) and (3.3) in (3.13)

and rearrange the terms, we obtain

x ≥ −αY
11(n1 − 1)− αY

12n2 + β1

[
αN
22 − αN

21 + β2(α
N
11 − αN

12)

1− β1β2

]
,

which simplifies to x ≥ He(Y, Y ). Similarly, we multiply (3.14) by β2,

then subtract (3.14) from (3.15), we get

y(1− β1β2) ≥ (−αY
22(n2 − 1)− αY

21n1)(1− β1β2)
+β2

[
β1(α

N
22 − αN

21) + αN
11 − αN

12

]
We could use the abbreviation of V (Y, Y ) as follows:

y ≥ −αY
22(n2 − 1)− αY

21n1 + β2

[
β1(α

N
22 − αN

21) + αN
11 − αN

12

1− β1β2

]
.

This, respectively, simplifies to

x ≥ He(Y, Y ) and y ≥ V e(Y, Y ).

Hence, the envy cohesive strategy Se = (Y, Y ) is an envy Nash Equili-

brum if and only if (x, y) ∈ Ne(Y, Y ).

The cohesive envy strategy Se = (Y,N) is Nash Equilibrium if and

only if the following inequalities hold

U1(Y ;n1, 0, β1) ≥ U1(N ;n1 − 1, 0, β1) and

U2(N ;n1, 0, β2) ≥ U2(Y ;n1, 1, β2). (3.17)

Substituting the envy utility functions (3.1) and (3.2) in the first in-

equality of (3.17), we obtain

ωY
1 + αY

11(n1 − 1) + αY
12(0)− β1(ωY

2 + αY
22(0− 1) + αY

21n1) ≥
ωN
1 + αN

11(n1 − (n1 − 1)− 1) + αN
12(n2 − 0)

−β1[ωN
2 + αN

22(n2 − 0− 1) + αN
21(n1 − (n1 − 1))].
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Rearrange the above inequality, we get

ωY
1 − ωN

1 − β1ωY
2 + β1ω

N
2 ≥ − αY

11(n1 − 1) + αN
12n2

+ β1[−αY
22 + αY

21n1 − αN
22(n2 − 1)− αN

21].

By simplifying the previous equations, we get

x− β1y ≥ − αY
11(n1 − 1) + αN

12n2 (3.18)

+ β1[−αY
22 + αY

21n1 − αN
22(n2 − 1)− αN

21].

Similarly, substituting the envy utility functions (3.3) and(3.4) in the

second inequality of (3.17), we obtain

ωN
2 + αN

22(n2 − 0− 1) + αN
21(n1 − n1)

−β2[ωN
1 + αN

11(n1 − n1 − 1) + αN
12(n2 − 0)] ≥

ωY
2 + αY

22(1− 1) + αY
21n1 − β2[ωY

1 + αY
11(n1 − 1) + αY

12].

By simplifying the previous equations, we get

y − β2x ≤ αN
22(n2 − 1)− αY

21n1 (3.19)

+β2[α
N
11 − αN

12(n2) + αY
11(n1 − 1) + αY

12].

We get y from (3.19), and then substituting it in (3.18), we obtain

x− β1β2x ≥ − αY
11(n1 − 1) + αN

12n2

+ β1β2[α
N
11 − αN

12(n2) + αY
11(n1 − 1) + αY

12]

+ β1[−αY
22 + αY

21n1 − αN
22(n2 − 1)−

αN
21 + αN

22(n2 − 1)− αY
21n1].

Rearrange the above inequality, we get

x(1− β1β2) ≥ (−αY
11(n1 − 1) + αN

12n2)(1− β1β2) (3.20)

+β1[−αN
21 − αY

22 + β2(α
N
11 + αY

12)].

We divide inequality (3.20) by (1− β1β2) and noting that β1β2<1, we

obtain

x ≥ −αY
11(n1 − 1) + αN

12n2 + β1

[
β2(α

N
11 + αY

12)− (αY
22 + αN

21)

1− β1β2

]
.
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We get x from (3.18), and then substituting it in (3.19), we obtain

y(1− β1β2) ≤ αN
22(n2 − 1)− αY

21n1

+β1β2[−αY
22 + αY

21n1 − αN
22(n2 − 1) + αN

21]

+β2[α
N
11 − αN

12n2 + αY
11(n1 − 1)

+αY
12 + αN

12n2 − αY
11(n1 − 1)].

Rearrange the above inequality, we get

y(1− β1β2) ≤ (αN
22(n2 − 1)− αY

21n1)(1− β1β2) (3.21)

+β2[−β1(αY
22 + αN

21) + αN
11 + αY

12].

We divide inequality (3.21) by (1− β1β2) and noting that β1β2<1, we

obtain

y ≤ αN
22(n2 − 1)− αY

21n1 + β2

[
αN
11 + αY

12 − β1(αY
22 + αN

21)

1− β1β2

]
.

This, respectively, simplifies to

x ≥ He(Y,N) and y ≤ V e(Y,N).

Hence, Se(Y,N) is ENE iff (x, y) ∈ Ne(Y,N).

Now, we study the influence of the envy parameters created by both

types of players on the location of Nash equilibria. More precisely, when

a certain Nash Equilibrium strategy can be envy Nash Equilibrium by

comparing the Nash domains N(S) with The envy Nash domains Ne(S)

for a given strategy S ∈ S.

Lemma 3.2. Given a strategy S ∈ S. If S = (Y, Y ) is a Nash Equi-

librium, then it is an envy Nash Equilibrium if and only if

β1(α
N
22 − αN

21)<α
N
12 − αN

11 and β2(α
N
11 − αN

12)<α
N
21 − αN

22.

Proof. The proof follows from the definitions of the envy Nash domain

Ne(Y, Y ) given in (3.5) and the Nash domain N(Y, Y ) given in (2.15)

when N(Y, Y ) ⊂ Ne(Y, Y ).

H(Y, Y )>He(Y, Y ) and V (Y, Y )>V e(Y, Y ).
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Substituting the thresholds horizontal and vertical strategy

H(Y, Y ) > H(Y, Y ) + β1

[
αN
22 − αN

21 + β2(α
N
11 − αN

12)

1− β1β2

]
V (Y, Y ) > V (Y, Y ) + β2

[
β1(α

N
22 − αN

21) + αN
11 − αN

12

1− β1β2

]
.

Rearrange the above inequality, we get

0>αN
22 − αN

21 + β2(α
N
11 − αN

12)

and

0>β1(α
N
22 − αN

21) + αN
11 − αN

12.

Rearranging the terms in the previous inequalities, we get

β1(α
N
22 − αN

21)<α
N
12 − αN

11 and β2(α
N
11 − αN

12)<α
N
21 − αN

22.

Hence, if players with type t1(resp. t2) like more being with players

with type t2(resp. t1) than being together making decision N (means

αN
11<α

N
12 and αN

22<α
N
21), then N(Y, Y ) ⊂ Ne(Y, Y ) holds (see Figure

3.1a ) and the following inequalities hold

β1>0>
αN
12 − αN

11

αN
22 − αN

21

and β2>0>
αN
22 − αN

21

αN
12 − αN

11

.

On the other hand, if players with type t1(resp. t2) like more being

together than being with players with type t2(resp. t1) making decision

N (means αN
11>α

N
12 and αN

22>α
N
21 ), then Ne(Y, Y ) ⊂ N(Y, Y ) (see figure

3.1b).

We remark that, Lemma 3.2 provides some properties for the Nash

domains Ne(Y, Y ) and N(Y, Y ):

(i) Ne(Y, Y ) = N(Y, Y ) if αN
11 = αN

12 and αN
22 = αN

21, which means

that the equilibria coincide.

To clarify item (i), we use the horizontal envyHe(Y, Y ) = H(Y, Y )

and the vertical envy V e(Y, Y ) = V (Y, Y ).
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(a) N(Y, Y ) ⊂ Ne(Y, Y ). (b) Ne(Y, Y ) ⊂ N(Y, Y ).

Fig. 3.1: The geometry of envy pure Nash domain Ne(Y, Y ).

Substituting the thresholdsH(Y, Y ), He(Y, Y ), V (Y, Y ) and V e(Y, Y ).

H(Y, Y ) = H(Y, Y ) + β1

[
αN
22 − αN

21 + β2(α
N
11 − αN

12)

1− β1β2

]
and

V (Y, Y ) = V (Y, Y ) + β2

[
β1(α

N
22 − αN

21) + αN
11 − αN

12

1− β1β2

]
.

Rearrange the above inequality, we get

0 = αN
22 − αN

21 + β2(α
N
11 − αN

12),

and

0 = β1(α
N
22 − αN

21) + αN
11 − αN

12.

(ii) Ne(Y, Y ) ⊂ N(Y, Y ) if and only if

β1(α
N
22 − αN

21)>α
N
12 − αN

11 and β2(α
N
11 − αN

12)>α
N
21 − αN

22.

To clarify item (ii), we use the horizontal envy He(Y, Y )>H(Y, Y )

and the vertical envy V e(Y, Y )>V (Y, Y ). Substituting the thresh-

olds H(Y, Y ), He(Y, Y ), V (Y, Y ) and V e(Y, Y ).

H(Y, Y )<H(Y, Y ) + β1

[
αN
22 − αN

21 + β2(α
N
11 − αN

12)

1− β1β2

]
and

V (Y, Y )<V (Y, Y ) + β2

[
β1(α

N
22 − αN

21) + αN
11 − αN

12

1− β1β2

]
.
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Rearrange the above inequality, we get

0<αN
22 − αN

21 + β2(α
N
11 − αN

12),

and

0<β1(α
N
22 − αN

21) + αN
11 − αN

12,

so, we get

β1(α
N
22 − αN

21)>α
N
12 − αN

11 and β2(α
N
11 − αN

12)>α
N
21 − αN

22.

(iii) The Nash domains Ne(Y, Y ) and N(Y, Y ) overlaps in the other-

wise cases.

Lemma 3.3. Given a strategy S ∈ S. If S = (Y,N) is a NE, then it

is ENE iff

β1(α
Y
22 + αN

21)<α
N
11 + αY

12 and β2(α
N
11 + αY

12)<α
Y
22 + αN

21.

Proof. The proof follows from the definitions of the envy Nash region

Ne(Y,N) given in (3.7) and the Nash region N(Y,N) given in (2.19)

when N(Y,N) ⊂ Ne(Y,N).

H(Y,N)>He(Y,N) and V (Y,N)<V e(Y,N).

Substituting the thresholds horizontal and vertical strategy

H(Y,N) > H(Y,N) + β1

[
β2(α

N
11 + αY

12)− (αY
22 + αN

21)

1− β1β2

]
V (Y,N) < V (Y,N) + β2

[
αN
11 + αY

12 − β1(αY
22 + αN

21)

1− β1β2

]
.

Ordering the last inequalities to get

0 > β2(α
N
11 + αY

12)− (αY
22 + αN

21)

0 < αN
11 + αY

12 − β1(αY
22 + αN

21).

Simplifies the terms in the previous inequalities, we get

β1(α
Y
22 + αN

21)<α
N
11 + αY

12 and β2(α
N
11 + αY

12)<α
Y
22 + αN

21.
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Hence, if αN
11 + αY

12<0 and αY
22 + αN

21<0, then N(Y,N) ⊂ Ne(Y,N)

holds (see Figure 3.2a ) and the following inequalities hold

β1>
αY
12 + αN

11

αY
22 + αN

21

>0 and β2>
αY
22 + αN

21

αY
12 + αN

11

>0.

On the other hand, if αN
11 + αY

12>0 and αY
22 + αN

21>0, then Ne(Y,N) ⊂
N(Y,N) (see figure 3.2b).

(a) N(Y,N) ⊂ Ne(Y,N). (b) Ne(Y,N) ⊂ N(Y,N).

Fig. 3.2: The geometry of envy pure Nash domain Ne(Y,N).

We remark that, Lemma 3.3 provides some properties for the Nash

domains Ne(Y,N) and N(Y,N):

(i) Ne(Y,N) = N(Y,N) if αN
11 = −αY

12 and αY
22 = −αN

21, which means

the equilibria coincide.

To clarify item (i), we use the definitions of the envy Nash region

Ne(Y,N) given in (3.7) and the Nash domain N(Y,N) given in

(2.19) when N(Y,N) = Ne(Y,N).

H(Y,N) = He(Y,N) and V (Y,N) = V e(Y,N).

Substituting the thresholds horizontal and vertical strategy

H(Y,N) = H(Y,N) + β1

[
β2(α

N
11 + αY

12)− (αY
22 + αN

21)

1− β1β2

]
V (Y,N) = V (Y,N) + β2

[
αN
11 + αY

12 − β1(αY
22 + αN

21)

1− β1β2

]
.

Rearrange the above inequality, we get

0 = β2(α
N
11 + αY

12)− (αY
22 + αN

21)

0 = αN
11 + αY

12 − β1(αY
22 + αN

21).
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(ii) Ne(Y,N) ⊂ N(Y,N) if and only if

β1(α
Y
22 + αN

21)>α
Y
12 + αN

11 and β2(α
N
11 + αY

12)>α
N
21 + αY

22.

To clarify item (ii), we use the definitions of the envy Nash domain

Ne(Y,N) given in (3.7) and the Nash domain N(Y,N) given in

(2.19) when Ne(Y,N) ⊂ N(Y,N).

H(Y,N)<He(Y,N) and V (Y,N)>V e(Y,N).

Substituting the thresholds horizontal and vertical strategy

H(Y,N) < H(Y,N) + β1

[
β2(α

N
11 + αY

12)− (αY
22 + αN

21)

1− β1β2

]
V (Y,N) > V (Y,N) + β2

[
αN
11 + αY

12 − β1(αY
22 + αN

21)

1− β1β2

]
.

Rearrange the above inequality, we get

0 < β2(α
N
11 + αY

12)− (αY
22 + αN

21)

0 > αN
11 + αY

12 − β1(αY
22 + αN

21).

Rearranging the terms in the previous inequalities, we get

β1(α
Y
22 + αN

21)>α
Y
12 + αN

11 and β2(α
N
11 + αY

12)>α
N
21 + αY

22.

(iii) The Nash domains Ne(Y,N) and N(Y,N) overlaps in the other-

wise cases.

Lemma 3.4. Given a strategy S ∈ S. If S = (N, Y ) is NE, then it is

an envy Nash Equilibrium if and only if

β1(α
N
22 + αY

21)<α
Y
11 + αN

12 and β2(α
Y
11 + αN

12)<α
N
22 + αY

21.

Proof. The proof is straight forward from the definitions of the envy

Nash region Ne(N, Y ) given in (3.9) and the Nash region N(N, Y )

given in (2.24) when N(N, Y ) ⊂ Ne(N, Y ).

H(N, Y )<He(N, Y ) and V (N, Y )>V e(N, Y ).
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Substituting the thresholds horizontal and vertical strategy

H(N, Y ) < H(N, Y ) + β1

[
αN
22 + αY

21 − β2(αY
11 + αN

12)

1− β1β2

]
V (N, Y ) > V (N, Y ) + β2

[
β1(α

N
22 + αY

21)− (αY
11 + αN

12)

1− β1β2

]
.

Rearrange the above inequality, we get

0 < αN
22 + αY

21 − β2(αY
11 + αN

12)

0 > β1(α
N
22 + αY

21)− (αY
11 + αN

12).

Rearranging the terms in the previous inequalities, we get

β1(α
N
22 + αY

21)<α
Y
11 + αN

12 and β2(α
Y
11 + αN

12)<α
N
22 + αY

21.

Hence, if αY
11 + αN

12<0 and αN
22 + αY

21<0, then N(N, Y ) ⊂ Ne(N, Y )

holds (see Figure 3.3a ) and the following inequalities hold

β1>
αN
12 + αY

11

αN
22 + αY

21

>0 and β2>
αN
22 + αY

21

αN
12 + αY

11

>0.

On the other hand, if αY
11 + αN

12>0 and αN
22 + αY

21>0, then Ne(N, Y ) ⊂
N(N, Y ) (see figure 3.3b). We remark that, Lemma 3.2 provides some

(a) N(N,Y ) ⊂ Ne(N,Y ). (b) Ne(N,Y ) ⊂ N(N,Y ).

Fig. 3.3: The geometry of envy pure Nash domain Ne(N,Y ).

properties for the Nash domains Ne(N, Y ) and N(N, Y ):
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(i) Ne(N, Y ) = N(N, Y ) if αY
11 = −αN

12 and αN
22 = −αY

21, which means

the equilibria coincide. This means that the equilibria coincide

β1β2 = 1 assuming αY
11 + αN

12 6= 0 and αN
22 + αY

21 6= 0. To clarify

item (i), we use the definitions of the envy Nash domain Ne(N, Y )

given in (3.9) and the Nash region N(N, Y ) given in (2.24) when

N(N, Y ) = Ne(N, Y ).

H(N, Y ) = He(N, Y ) and V (N, Y ) = V e(N, Y ).

Substituting the thresholds horizontal and vertical strategy

H(N, Y ) = H(N, Y ) + β1

[
αN
22 + αY

21 − β2(αY
11 + αN

12)

1− β1β2

]
V (N, Y ) = V (N, Y ) + β2

[
β1(α

N
22 + αY

21)− (αY
11 + αN

12)

1− β1β2

]
.

Simplifies the terms in the previous inequalities, we get

0 = αN
22 + αY

21 − β2(αY
11 + αN

12)

0 = β1(α
N
22 + αY

21)− (αY
11 + αN

12).

(ii) Ne(N, Y ) ⊂ N(N, Y ) if and only if

β1(α
N
22 + αY

21)>α
N
12 + αY

11 and β2(α
Y
11 + αN

12)>α
Y
21 + αN

22.

To clarify item (ii), we use the definitions of the envy Nash domain

Ne(N, Y ) given in (3.9) and the Nash region N(N, Y ) given in

(2.24) when Ne(N, Y ) ⊂ N(N, Y ).

H(N, Y )>He(N, Y ) and V (N, Y )<V e(N, Y ).

Substituting the thresholds horizontal and vertical strategy

H(N, Y ) > H(N, Y ) + β1

[
αN
22 + αY

21 − β2(αY
11 + αN

12)

1− β1β2

]
V (N, Y ) < V (N, Y ) + β2

[
β1(α

N
22 + αY

21)− (αY
11 + αN

12)

1− β1β2

]
.

Rearranging the terms in the previous inequalities, we get

0 > αN
22 + αY

21 − β2(αY
11 + αN

12)

0 < β1(α
N
22 + αY

21)− (αY
11 + αN

12).
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Simplifies the terms in the previous inequalities, we get

β1(α
N
22 + αY

21)>α
N
12 + αY

11 and β2(α
Y
11 + αN

12)>α
Y
21 + αN

22.

(iii) the Nash domains Ne(N, Y ) and N(N, Y ) overlaps in the other-

wise cases.

Lemma 3.5. Given a strategy S ∈ S. If S = (N,N) is NE, then it is

ENE iff

β1(α
Y
22 − αY

21)<α
Y
12 − αY

11 and β2(α
Y
11 − αY

12)<α
Y
21 − αY

22.

Proof. The proof follows from the definitions of the envy Nash domain

Ne(N,N) given in (3.11) and the Nash region N(N,N) given in (2.28)

when N(N,N) ⊂ Ne(N,N).

H(N,N)<He(N,N) and V (N,N)<V e(N,N).

Substituting the thresholds horizontal and vertical strategy

H(N,N) < H(N,N) + β1

[
αY
21 − αY

22 + β2(α
Y
12 − αY

11)

1− β1β2

]
V (N,N) < V (N,N) + β2

[
β1(α

Y
21 − αY

22) + αY
12 − αY

11

1− β1β2

]
.

Rearranging the terms in the previous inequalities, we get

0 < αY
21 − αY

22 + β2(α
Y
12 − αY

11)

0 < β1(α
Y
21 − αY

22) + αY
12 − αY

11.

Rearrange the above inequality, we get

β1(α
Y
22 − αY

21)<α
Y
12 − αY

11 and β2(α
Y
11 − αY

12)<α
Y
21 − αY

22.

Hence, if players with type t1(resp. t2) like more being with players

with type t2(resp. t1) than being together making decision Y (means
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αY
11<α

Y
12 and αY

22<α
Y
21), then N(N,N) ⊂ Ne(N,N) holds (see Figure

3.4a ) and the following inequalities hold

β1>0>
αY
12 − αY

11

αY
22 − αY

21

and β2>0>
αY
22 − αY

21

αY
12 − αY

11

.

On the other hand, if players with type t1(resp. t2) like more being

together than being with players with type t2(resp. t1) making decision

Y (means αY
11>α

Y
12 and αY

22>α
Y
21 ), then Ne(N,N) ⊂ N(N,N) (see

figure 3.4b).

(a) N(N,N) ⊂ Ne(N,N). (b) Ne(N,N) ⊂ N(N,N).

Fig. 3.4: The geometry of envy pure Nash domain Ne(N,N).

We remark that, Lemma 3.2 provides some properties for the Nash

domains Ne(N,N) and N(N,N):

(i) Ne(N,N) = N(N,N) if αY
11 = αY

12 and αY
22 = αY

21, which means

that the equilibria coincide.

To clarify item (i), we use the definitions of the envy Nash domain

Ne(N,N) given in (3.11) and the Nash region N(N,N) given in

(2.28) when N(N,N) = Ne(N,N).

H(N,N) = He(N,N) and V (N,N) = V e(N,N).

Substituting the thresholds horizontal and vertical strategy

H(N,N) = H(N,N) + β1

[
αY
21 − αY

22 + β2(α
Y
12 − αY

11)

1− β1β2

]
V (N,N) = V (N,N) + β2

[
β1(α

Y
21 − αY

22) + αY
12 − αY

11

1− β1β2

]
.
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Ordering the last inequalities to get

0 = αY
21 − αY

22 + β2(α
Y
12 − αY

11)

0 = β1(α
Y
21 − αY

22) + αY
12 − αY

11.

(ii) Ne(N,N) ⊂ N(N,N) if and only if

β1(α
Y
22 − αY

21)>α
Y
12 − αY

11 and β2(α
Y
11 − αY

12)>α
Y
21 − αY

22.

To clarify item (ii), we use the definitions of the envy Nash domain

Ne(N,N) given in (3.11) and the Nash domain N(N,N) given in

(2.28) when Ne(N,N) ⊂ N(N,N).

H(N,N)>He(N,N) and V (N,N)>V e(N,N).

Substituting the thresholds horizontal and vertical strategy

H(N,N) > H(N,N) + β1

[
αY
21 − αY

22 + β2(α
Y
12 − αY

11)

1− β1β2

]
V (N,N) > V (N,N) + β2

[
β1(α

Y
21 − αY

22) + αY
12 − αY

11

1− β1β2

]
.

Rearranging the terms in the previous inequalities, we get

0 > αY
21 − αY

22 + β2(α
Y
12 − αY

11)

0 > β1(α
Y
21 − αY

22) + αY
12 − αY

11.

Simplifies the terms in the previous inequalities, we get

β1(α
Y
22 − αY

21)>α
Y
12 − αY

11 and β2(α
Y
11 − αY

12)>α
Y
21 − αY

22.

(iii) the Nash domains Ne(N,N) and N(N,N) overlaps in the other-

wise cases.

3.2 Geometric classes of envy tilings

The representation of the Nash domains

N(Y, Y ),N(Y,N),N(N, Y ),N(N,N)
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and the envy Nash domains

Ne(Y, Y ),Ne(Y,N),Ne(N, Y ),Ne(N,N)

in the Cartesian xy-plan determine an envy decision tiling. These

tilings characterize geometrically all envy Nash equilibria.

Recall the definition of the entries of the crowding matrix A as de-

fined in the Definition 2.10. We now introduce another matrix called

balanced threshold weight matrix. The coordinates of these ma-

trices have a main influence on the order of the horizontal and vertical

thresholds.

Definition 3.3. Let B be the balanced threshold weight matrix whose

coordinates are given by

B =

(
B11 B12

B21 B22

)

=

(
A11(n1 − 1)− A12n2 A11(n1 − 1)− A12n2

A22(n2 − 1)− A21n1 A22(n2 − 1)− A21n1

)
.

The signs of the coordinates of the influence matrix and balanced

threshold weight matrix determine a certain order for the horizontal

and vertical strategic thresholds.

Definition 3.4. An envy tiling is structurally stable if its horizontal

and vertical cut points do not intersect.

Definition 3.5. An envy tiling has bifurcation if least two of its hori-

zontal or vertical cut points intersect.

Definition 3.6. Two envy tilings are combinatorial equivalent if the

orders of the horizontal and vertical cut points are equal in both tilings.

We call the pair of horizontal and vertical braids the envy human

decision chromosomes as they play a central role to determine the hu-

man decision behavior, see Figure 3.5 where we show only the horizon-

tal braid of envy human decision chromosomes for players with type
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t1 (the vertical braid of envy human decision chromosomes for play-

ers with type t2 follows similarly to Figure 3.5). Each pair of lines

transversal to the horizontal and vertical braids, respectively, deter-

mines a unique envy decision tiling. The number of permutations for

ordering the horizontal thresholds along the x-axis is huge (8! without

horizontal bifurcations) and same number of permutations for the or-

dering the vertical thresholds along y-axis without vertical bifurcations.

However, we will focus on a certain order for the horizontal (resp. verti-

cal) thresholds presented in Figure 3.5 where there are 1024 = 32× 32

combinatorial classes of envy decision tilings, and 256 = 16 × 16 of

them are being structurally stable and 768 = 1024−256 combinatorial

classes of bifurcation decision tilings.

In Figure 3.5, note that:

• pink circles • represent the horizontal envy threshold He(N,N),

• black circles • represent the horizontal envy threshold He(N, Y ),

• green circles • represent the horizontal threshold H(N,N),

• blue circles • represent the horizontal threshold H(N, Y ),

• orange circles • represent the horizontal threshold H(Y,N),

• red circles • represent the horizontal threshold H(Y, Y ),

• yellow circles • represent the horizontal envy threshold He(Y,N),

• gray circles • represent the horizontal envy threshold He(Y, Y ),

• light green arrows ↔ represent the occurrence of four times of

horizontal (resp. vertically) bifurcations,

• and light orange arrows↔ represent the occurrence of three times

of horizontal (resp. vertical) bifurcations.

In Figures 3.6, 3.7 and 3.8, we present three envy decisions tilings where
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Fig. 3.5: Horizontal braid of envy human decision chromosomes for players with

type t1.

• regions with cohesive uniqueness Nash equilibria domain

U(Y, Y ) ⊂ N(Y, Y ) colored red,

U(Y,N) ⊂ N(Y,N) colored orange,

U(N, Y ) ⊂ N(N, Y ) colored blue ,

U(N,N) ⊂ N(N,N) colored green;

• regions with cohesive uniqueness envy Nash equilibria domains

U e(Y, Y ) ⊂ N e(Y, Y ) colored light red,

U e(Y,N) ⊂ N e(Y,N) colored light orange,

U e(N, Y ) ⊂ N e(N, Y ) colored light blue ,

U e(N,N) ⊂ N e(N,N) colored light green;

• regions with neither cohesive Nash equilibria nor envy Nash equi-

libria colored purple;

• regions with two cohesive Nash equilibria colored yellow,

• regions with three cohesive Nash equilibria colored brown,

• regions with four cohesive Nash equilibria colored pink,
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• regions with five cohesive Nash equilibria colored light yellow,

• regions with six cohesive Nash equilibria colored gray,

• regions with seven cohesive Nash equilibria colored chartreuse,

• regions with eight cohesive Nash equilibria colored rainbow.

 

 

 

 
 

y 

x 

N(Y,Y)=Nᵉ(Y,Y) 

N(Y,N)=Nᵉ(Y,N) 

N(N,Y)=Nᵉ(N,Y) 

N(N,N)=Nᵉ(N,N) 

U(Y,Y)=Uᵉ(Y,Y) 

U(Y,N)=Uᵉ(Y,N) 

U(N,Y)=Uᵉ(N,Y) 

U(N,N)=Uᵉ(N,N) 

Fig. 3.6: Envy Nash equilibria domains when A11 = A12 = A21 = A22 = 0.

In Figure 3.6, for every taste x and y, there is only one cohesive NE

and one envy NE, except along the horizontal and vertical axes where

there are two cohesive NE and two envy NE, and at the origin where

there are four cohesive NE and four envy NE.

 
 

Nᵉ(N,N) 
Vᵉ(N,N) 

V(N,N) 

Vᵉ(Y,N) 

x 

y 

Hᵉ(Y,N) H(Y,N) H(N,N) Hᵉ(N,N) Hᵉ(N,Y) 

Vᵉ(Y,Y) 

Vᵉ(N,Y) 

N(Y,Y) 

N(N,Y) 

Nᵉ(N,Y) 

V(N,Y) 

H(N,Y) 

Nᵉ(Y,N) 

N(Y,N) 

H(Y,Y) Hᵉ(Y,Y) 

V(Y,N) 

V(Y,Y) 

Nᵉ(Y,Y) 

U(Y,Y) U(N,Y) 

U(Y,N) 

N(N,N) 

U(N,N) 

Fig. 3.7: Simple strategy of cohesive envy Nash equilibria domains.
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In Figure 3.7, we show one possible tiling with simple strategy of

the cohesive envy Nash equilibria domains when

αd
11>α

d
12, αd

22>α
d
21, αd

11+α
d′

12>0, αd
22+α

d′

21>0 and d 6= d′ ∈ {Y,N}

and

A11<0, A22<0, A12>0, A21>0 and B12<0, B21<0.

We show that there is an unbounded region colored purple with neither

cohesive Nash equilibrium nor cohesive envy Nash equilibrium.

In Figure 3.8, we show the high complexity of distributing the co-

hesive envy Nash equilibria domains when

αd
11<α

d
12, αd

22<α
d
21, αd

11+α
d′

12<0, αd
22+α

d′

21<0 and d 6= d′ ∈ {Y,N}

and

A11>0, A22>0, A12<0, A21<0 and B12>0, B21>0.

We show that there are regions with two, three, four, five, six, seven

and eight cohesive Nash equilibria colored yellow, brown, pink, light

yellow, gray, chartreuse and rainbow, respectively.

 
 

(N,N) 

(N,Y) 

(Y,N) 

(Y,Y) 

x 

Hᵉ(N,Y) 

Hᵉ(Y,N) 

Vᵉ(Y,Y) 

Hᵉ(Y,Y) 

Nᵉ(Y,N) 

Nᵉ(N,Y) 

(N,N) 
(Y,N)ᵉ 

(Y,Y) 
(N,Y)ᵉ (N,Y)ᵉ 

(Y,N) 
(Y,Y)ᵉ 
(Y,N)ᵉ 

(Y,N)ᵉ 

(Y,Y)ᵉ 

(N,N)ᵉ 

(N,Y) 
(N,N)ᵉ 
(N,Y)ᵉ 
(N,N) 

(Y,N) 
(Y,Y)ᵉ 
(Y,N)ᵉ 

(Y,Y) 

(N,N)ᵉ 
(N,Y)ᵉ 
(N,N) 

(Y,Y) 
(Y,Y)ᵉ 
(Y,N)ᵉ 

(Y,Y)ᵉ 
(N,Y)ᵉ 
(Y,Y)ᵉ (Y,Y) 

(N,Y) 

Vᵉ(N,Y) 

(N,N)ᵉ 

y 

Vᵉ(Y,N) 

(N,N) 
(Y,N)ᵉ 
(N,N)ᵉ 

(Y,N) 

(N,Y)ᵉ 
(Y,Y)ᵉ 
(N,Y) 

(Y,N)ᵉ 
(N,N)ᵉ 
(Y,N) 

(Y,N)ᵉ 
(N,N)ᵉ (Y,N) 

(N,Y)ᵉ 

(Y,N) 
(Y,Y)ᵉ 
(Y,N)ᵉ 

(N,Y)ᵉ 

(N,Y) 
(N,N)ᵉ 
(N,Y)ᵉ 

(Y,N)ᵉ 

(N,Y)ᵉ 
(Y,Y)ᵉ (N,Y) 

(Y,N)ᵉ 

Hᵉ(N,N) 

(N,Y)ᵉ 

(Y,N)ᵉ 

(N,N) 

(N,N)ᵉ 

(Y,Y) 

(Y,N)ᵉ 

(Y,Y)ᵉ 
(N,Y)ᵉ 

Vᵉ(N,N) 

(Y,N)ᵉ 

(N,N) (N,N)ᵉ (Y,N) 

(N,Y)ᵉ 

(Y,Y) 

(Y,N)ᵉ 

(Y,Y)ᵉ 
(N,Y)ᵉ 

(Y,N) 

(Y,Y) 

(Y,N)ᵉ 

(Y,Y)ᵉ 
(N,Y)ᵉ (N,Y) 

(Y,N) 
(N,N)ᵉ 
(N,Y)ᵉ 

(Y,N)ᵉ 
(Y,Y)ᵉ 

(Y,Y)ᵉ 
(Y,N)ᵉ 

(N,Y)ᵉ 
(N,Y) 

(N,N)ᵉ 

Nᵉ(Y,Y) 

Nᵉ(N,N) 

V(N,Y) 

(Y,Y) 

(Y,N)ᵉ 

(Y,Y)ᵉ 
(N,Y)ᵉ (N,Y) 

(N,N)ᵉ 

H(Y,N) 
(Y,Y) 

(Y,Y)ᵉ 

(N,Y)ᵉ 

(Y,N) 

(Y,N)ᵉ 

(N,N)ᵉ 

H(N,Y) 

(N,Y)ᵉ 

(Y,N)ᵉ 

(N,Y) 

(N,N) 

(N,N)ᵉ 

(Y,Y)ᵉ 

V(Y,N) 

(Y,N)ᵉ 

(Y,Y)ᵉ 
(N,Y)ᵉ 

(N,N)ᵉ 
(N,N) 
(Y,N) 

N(Y,N) 

N(N,Y) 

V(Y,Y) 

H(Y,Y) 

H(N,N) 

V(N,N) 

N(N,N) 

N(Y,Y) 

(Y,N)ᵉ 
(N,Y)ᵉ (N,Y) 
(N,N)ᵉ 

(Y,Y)ᵉ 

(Y,N) 
(N,N) 

(Y,N)ᵉ 

(Y,Y)ᵉ 
(N,Y)ᵉ 

(N,N)ᵉ 
(Y,Y) 
(Y,N) 

(N,Y) 

(N,Y) 
(N,N)ᵉ 
(N,Y)ᵉ 

(N,N)ᵉ 
(N,Y)ᵉ 

(Y,N)ᵉ 
(N,Y) 

(N,N) 

Fig. 3.8: The complexity of envy Nash equilibria domain.
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3.3 Disparate envy Nash equilibria

Here we study the disparate envy NE.

Definition 3.7. The strategic envy set (l1, l2) is the set of all pure

strategies S ∈ S: l1(S) = l1 and l2(S) = l2. The cohesive strategic

envy set (l1, l2) is the set all pure strategies S ∈ S with l1 = 0 or

l1 = n1 and l2 = 0 or l2 = n2. The disparate strategic envy set (l1, l2) is

the set all pure strategies envy set that are not cohesive strategic envy

set.

Definition 3.8. The pure envy Nash Equilibrium (set) (l1, l2) is a

strategic envy set whose strategies are NE. The (pure) envy Nash region

Ne(l1, l2) contains all taste pairs (x, y) so that (l1, l2) is a NE set.

The pure ENE set (l1, l2) is cohesive if l1 = 0 or l1 = n1 and l2 = 0

or l2 = n2. Otherwise, the pure ENE set (l1, l2) is disparate envy.

Lemma 3.6. let (l1, l2) be an envy Nash Equilibrium set.

(i) If A11>β1A21, then l1 ∈ {0, n1}

(ii) If A22>β2A12, then l2 ∈ {0, n2}

Furthermore, if A11>β1A21 and A22>β2A12 then (l1, l2) is cohesive envy

Nash Equilibrium.

Proof. The proof is by contradiction. Assume the envy strategy (l1, l2)

is a NE for l1 ∈ {1, 2, . . . , n1 − 1}. So we must have

U1(Y ; l1, l2, β1) ≥ U1(N ; l1 − 1, l2, β1) and (3.22)

U1(N ; l1, l2, β1) ≥ U1(Y ; l1 + 1, l2, β1).

Substituting the envy utility functions (3.1) in the
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first inequality (3.22), we get

ωY
1 +αY

11(l1 − 1) + αY
12l2 − β1(ωY

2 + αY
22(l2 − 1) + αY

21l1) ≥
ωN
1 +αN

11(n1 − (l1 − 1)− 1) + αN
12(n2 − l2)

−β1(ωN
2 + αN

22(n2 − l2 − 1) + αN
21(n1 − (l1 − 1))),

and substituting the envy utility functions (3.1) in the second inequality

(3.22), we get

ωN
1 +αN

11(n1 − l1 − 1) + αN
12(n2 − l2)

−β1(ωN
2 + αN

22(n2 − l2 − 1) + αN
21(n1 − l1)) ≥

ωY
1 +αY

11(l1 + 1− 1) + αY
12l2 − β1(ωY

2 + αY
22(l2 − 1) + αY

21(l1 + 1)).

Ordering the last inequalities to get

αY
11(l1 − 1) +αN

11(n1 − l1 − 1)− αY
11(l1)− αN

11(n1 − l1) ≥
β1(α

N
21(n1 − l1)) +β1(α

Y
21l1)− β1(αY

21(l1 + 1)) + β1(α
N
21(n1 − l1 + 1)).

That is

A11 ≤ β1A21,

which contradicts that

A11>β1A21.

Hence, Lemma 3.6(i) is done. We prove in same way the other items.

3.4 Special case of Theorem 3.1

In this section we study a special case of Theorem 3.1 when the envy

parameters β1 = 1 and β2 = 1.

To start this special case we first simplify the envy utility functions.

The envy utility Ue
1 : D ×O × R+ −→ R of an envy player whose

type is t1 and makes decision Y is given by

Ue
1 (Y ; l1, l2, 1) = U1(Y ; l1, l2)− U2(Y ; l1, l2) (3.23)

= (ωY
1 − ωY

2 ) + αY
11(l1 − 1) + αY

12l2 − αY
22(l2 − 1)− αY

21l1.
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The envy utility Ue
1 : D×O×R+ −→ R of an envy player whose type

is t1 and makes decision N is given by

Ue
1 (N ; l1, l2, 1) = U1(N ; l1, l2)− U2(N ; l1, l2) (3.24)

= (ωN
1 − ωN

2 ) + αN
11(n1 − l1 − 1) + αN

12(n2 − l2)
−αN

22(n2 − l2 − 1)− αN
21(n1 − l1).

The envy utility Ue
2 : D×O×R+ −→ R of an envy player whose type

is t2 and makes decision Y is given by

Ue
2 (Y ; l1, l2, 1) = U2(Y ; l1, l2)− U1(Y ; l1, l2)

= (ωY
2 − ωY

1 ) + αY
22(l2 − 1) + αY

21l1

−αY
11(l1 − 1)− αY

12l2 . (3.25)

The envy utility Ue
2 : D×O×R+ −→ R of an envy player whose type

is t2 and makes decision N is given by

Ue
2 (N ; l1, l2, 1) = U2(N ; l1, l2)− U1(N ; l1, l2)

= (ωN
2 − ωN

1 ) + αN
22(n2 − l2 − 1) + αN

21(n1 − l1)
−αN

11(n1 − l1 − 1)− αN
12(n2 − l2). (3.26)

Theorem 3.7. Assume that β1 = 1 and β2 = 1. The envy cohesive

strategy Se = (Y, Y ) is ENE iff (x, y) ∈ N e
s (Y, Y ), where the envy Nash

region N e
s (Y, Y ) is given by

N e
s (Y, Y ) = {(x, y) ∈ R2 : Ze

L(Y, Y ) ≤ y − x ≤ Ze
R(Y, Y )},

the left envy threshold Ze
L(Y, Y ) is given by

Ze
L(Y, Y ) = V (Y, Y )−H(Y, Y ) + αN

11 − αN
12,

the right envy threshold Ze
R(Y, Y ) is given by

Ze
R(Y, Y ) = V (Y, Y )−H(Y, Y )− αN

22 + αN
21,

where the horizontal and vertical cut points are as given in (2.16).

Proof. The cohesive envy strategy Se = (Y, Y ) is NE iff

Ue
1 (Y ;n1, n2, 1) ≥ Ue

1 (N ;n1 − 1, n2, 1) and (3.27)

Ue
2 (Y ;n1, n2, 1) ≥ Ue

2 (N ;n1, n2 − 1, 1).
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Substituting the envy utility functions from (3.23) and (3.24) in the

first inequality of (3.27), we obtain

(ωY
1 − ωY

2 ) + αY
11(n1 − 1) + αY

12n2 − αY
22(n2 − 1)− αY

21n1 ≥
(ωN

1 − ωN
2 ) + αN

11(n1 − 1− (n1 − 1)) + αN
12(n2 − n2)

−αN
22(n2 − n2 − 1)− αN

21(n1 − (n1 − 1)).

Rearrange the above inequality, we get

(ωY
1 −ωN

1 )−(ωY
2 −ωN

2 ) ≥ −αY
11(n1−1)−αY

12n2+α
Y
22(n2−1)+αY

21n1+α
N
22−αN

21.

By simplifying the previous inequality using the definition of horizontal

and vertical tastes x and y given in (2.8), we get

x− y ≥ −αY
11(n1 − 1)− αY

12n2 + αY
22(n2 − 1)

+αY
21n1 + αN

22 − αN
21. (3.28)

Substituting the horizontal and vertical cut points from (2.16) in the

last inequality, we obtain

y − x ≤ V (Y, Y )−H(Y, Y )− αN
22 + αN

21.

Hence,

y − x ≤ Ze
R(Y, Y ), (3.29)

where Ze
R(Y, Y ) is as given in the statement of Theorem 3.7.

Similarly, we substitute the envy utility functions from (3.25) and

(3.26) in the second inequality of (3.27), we obtain

(ωY
2 − ωY

1 ) + αY
22(n2 − 1) + αY

21n1 − αY
11(n1 − 1)− αY

12n2 ≥
(ωN

2 − ωN
1 ) + αN

22(n2 − 1− (n2 − 1)) + αN
21(n1 − n1)

−αN
11(n1 − n1 − 1)− αN

12(n2 − (n2 − 1)).

Rearrange the above inequality, we get

(ωY
2 −ωN

2 )−(ωY
1 −ωN

1 ) ≥ −αY
22(n2−1)−αY

21n1+α
Y
11(n1−1)+αY

12n2+α
N
11−αN

12.

By simplifying the previous inequality using the definition of horizontal

and vertical tastes x and y given in (2.8), we get

y − x ≥ −αY
22(n2 − 1)− αY

21n1 + αY
11(n1 − 1)

+αY
12n2 + αN

11 − αN
12. (3.30)
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Substituting the horizontal and vertical cut points from (2.16) in

the last inequality, we obtain

y − x ≥ V (Y, Y )−H(Y, Y ) + αN
11 − αN

12.

Hence,

x− y ≥ Ze
L(Y, Y ), (3.31)

where Ze
L(Y, Y ) is as given in the statement of Theorem 3.7. Combining

inequalities (3.29) and (3.31), we get

Ze
L(Y, Y ) ≤ y − x ≤ Ze

R(Y, Y ).

Lemma 3.8. Assume that β1 = 1 and β2 = 1. A necessary condition

for the envy cohesive strategy Se = (Y, Y ) to be envy Nash Equilibrium

is

αN
12 + αN

21 ≥ αN
11 + αN

22.

Proof. Using Theorem 3.7 , if Se = (Y, Y ) is an envy Nash Equilibrium

then one can arrange inequalities (3.28) and (3.30) to get

x ≥ −αY
11(n1 − 1)− αY

12n2 + αY
22(n2 − 1) + αY

21n1 + αN
22 − αN

21 + y,

y ≥ −αY
22(n2 − 1)− αY

21n1 + αY
11(n1 − 1) + αY

12n2 + αN
11 + αN

12 + x.

The last two inequalities simplify to

x ≥ −������
αY
11(n1 − 1)−��

��
αY
12n2 +������

αY
22(n2 − 1)

+��
��

αY
21n1 + αN

22 − αN
21 −������

αY
22(n2 − 1)

−����
αY
21n1 +������

αY
11(n1 − 1) +�

���
αY
12n2 + αN

11 + αN
12 + x

and

y ≥ −������
αY
22(n2 − 1)−��

��
αY
21n1 +������

αY
11(n1 − 1)

+��
��

αY
12n2 + αN

11 + αN
12 −������

αY
11(n1 − 1)−��

��
αY
12n2

+������
αY
22(n2 − 1) +�

���
αY
21n1 + αN

22 − αN
21 + y.
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Simplifying the last two inequalities, we get

0 ≥ αN
22 − αN

21 + αN
11 − αN

12.

Hence,

αN
12 + αN

21 ≥ αN
11 + αN

22.

Hence, the last condition means that players of type ti prefer more

to be with players of type tj deciding N rather being together deciding

N . This is necessary condition for the strategy Se = (Y, Y ) to be envy

Nash Equilibrium, where i 6= j ∈ {1, 2}. The condition agrees with the

result of Lemma 3.2

Theorem 3.9. Assume that β1 = 1 and β2 = 1. The envy cohesive

strategy Se = (Y,N) is an envy Nash Equilibrium if and only if (x, y) ∈
N e

s (Y,N), where the envy Nash domain N e
s (Y,N) is given by

N e
s (Y,N) = {(x, y) ∈ R2 : y − x ≤ min{Ze

1(Y,N), Ze
2(Y,N)}},

the envy threshold Ze
1(Y,N) is given by

Ze
1(Y,N) = V (Y,N)−H(Y,N) + αY

22 + αN
21,

the envy threshold Ze
2(Y,N) is given by

Ze
2(Y,N) = V (Y,N)−H(Y,N) + αN

11 + αY
12, (3.32)

the horizontal H(Y,N) and vertical V (Y,N) strategic thresholds of

(Y,N) strategy are as given in (2.20).

Proof. The cohesive envy strategy Se = (Y,N) is Nash Equilibrium if

and only if the following inequalities hold

U1(Y ;n1, 0, 1) ≥ U1(N ;n1 − 1, 0, 1) and (3.33)

U2(N ;n1, 0, 1) ≥ U2(Y ;n1, 1, 1).
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Substituting the envy utility functions from (3.23) and (3.24) in the

first inequality of (3.33), we obtain

(ωY
1 − ωY

2 ) + αY
11(n1 − 1) + αY

12(0)− αY
22(0− 1)

−αY
21n1 ≥ (ωN

1 − ωN
2 ) + αN

11(n1 − (n1 − 1)− 1)

+αN
12(n2 − 0)− αN

22(n2 − 0− 1)− αN
21(n1 − (n1 − 1)).

Rearrange the above inequality, we get

(ωY
1 − ωY

2 )− (ωN
1 − ωN

2 ) ≥ −αN
22(n2 − 1)

−αY
11(n1 − 1) + αN

12n2 + αY
21n1 − αY

22 − αN
21.

By simplifying the previous inequality using the definition of horizontal

and vertical preferences x and y given in (2.8), we get

x− y ≥ −αN
22(n2 − 1)− αY

11(n1 − 1) + αN
12n2

+αY
21n1 − αY

22 − αN
21. (3.34)

Substituting the horizontal H(Y,N) and vertical V (Y,N) strategic

thresholds from (2.20) in the last inequality, we obtain

y − x ≤ V (Y,N)−H(Y,N) + αY
22 + αN

21.

Hence,

y − x ≤ Ze
1(Y,N),

where Ze
1(Y,N) is as given in the statement of Theorem 3.9.

Similarly, we substitute the envy utility functions from (3.26) and

(3.25) in the second inequality of (3.33), we obtain

(ωN
2 − ωN

1 ) + αN
22(n2 − 0− 1) + αN

21(n1 − n1)

−αN
11(n1 − n1 − 1)− αN

12(n2 − 0) ≥ (ωY
2 − ωY

1 )

+αY
22(1− 1) + αY

21n1 − αY
11(n1 − 1)− αY

12(1).

By simplifying the previous inequality using the definition of horizontal

and vertical preferences x and y given in (2.8), we get

x− y ≥ −αN
22(n2 − 1)− αY

11(n1 − 1) + αY
21n1

+αN
12n2 − αY

12 − αN
11. (3.35)
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Substituting the horizontal H(Y,N) and vertical V (Y,N) strategic

thresholds from (2.20) in the last inequality, we obtain

y − x ≤ V (Y,N)−H(Y,N) + αN
11 + αY

12.

Hence,

y − x ≤ Ze
2(Y,N),

where Ze
2(Y,N) is as given in the statement of Theorem 3.9.

Theorem 3.10. Assume that β1 = 1 and β2 = 1. The envy cohesive

strategy Se = (N, Y ) is an envy Nash Equilibrium if and only if (x, y) ∈
N e

s (N, Y ), where the envy Nash domain N e
s (N, Y ) is given by

N e
s (N, Y ) = {(x, y) ∈ R2 : y − x ≥ max{Ze

1(N, Y ), Ze
2(N, Y )}},

the envy threshold Ze
1(N, Y ) is given by

Ze
1(N, Y ) = V (N, Y )−H(N, Y )− αY

21 − αN
22,

the envy threshold Ze
2(N, Y ) is given by

Ze
2(N, Y ) = V (N, Y )−H(N, Y )− αY

11 − αN
12, (3.36)

the horizontal H(N, Y ) and vertical V (N, Y ) strategic thresholds of

(N, Y ) strategy are as given in (2.25).

Proof. The cohesive envy strategy Se = (N, Y ) is Nash Equilibrium if

and only if the following inequalities hold

U1(N ; 0, n2, 1) ≥ U1(Y ; 1, n2, 1) and (3.37)

U2(Y ; 0, n2, 1) ≥ U2(N ; 0, n2 − 1, 1).

Substituting the envy utility functions from (3.24) and (3.23) in the

first inequality of (3.37), we obtain

(ωN
1 − ωN

2 ) + αN
11(n1 − 0− 1) + αN

12(n2 − n2)

−αN
22(n2 − n2 − 1)− αN

21(n1 − 0) ≥ (ωY
1 − ωY

2 )

+αY
11(1− 1) + αY

12n2 − αY
22(n2 − 1)− αY

21(1).
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Rearrange the above inequality, we get

(ωY
2 − ωN

2 )− (ωY
1 − ωN

1 ) ≥ −αY
22(n2 − 1)

−αN
11(n1 − 1) + αN

21n1 + αY
12n2 − αY

21 − αN
22.

By simplifying the previous inequality using the definition of horizontal

and vertical preferences x and y given in (2.8), we get

y − x ≥ −αY
22(n2 − 1)− αN

11(n1 − 1) + αN
21n1

+αY
12n2 − αY

21 − αN
22 (3.38)

Substituting the horizontal H(N, Y ) and vertical V (N, Y ) strategic

thresholds from (2.25) in the last inequality, we obtain

y − x ≥ V (N, Y )−H(N, Y )− αY
21 − αN

22.

Hence,

y − x ≥ Ze
1(N, Y ),

where Ze
1(N, Y ) is as given in the statement of Theorem 3.10.

Similarly, we substitute the envy utility functions from (3.25) and

(3.26) in the second inequality of (3.37), we obtain

(ωY
2 − ωY

1 ) + αY
22(n2 − 1) + αY

21(0)

−αY
11(0− 1)− αY

12n2 ≥ (ωN
2 − ωN

1 )

+αN
22(n2 − (n2 − 1)− 1) + αN

21(n1 − 0)

−αN
11(n1 − 0− 1)− αN

12(n2 − (n2 − 1)).

Rearrange the above inequality, we get

ωY
2 − ωN

2 − (ωY
1 − ωN

1 ) ≥ −αN
11(n1 − 1)− αY

22(n2 − 1)

+αY
12n2 + αN

21n1 − αY
11 − αN

12.

By simplifying the previous inequality using the definition of horizontal

and vertical preferences x and y given in (2.8), we get

y − x ≥ −αN
11(n1 − 1)− αY

22(n2 − 1) + αY
12n2

+αN
21n1 − αY

11 − αN
12. (3.39)



3.4. SPECIAL CASE OF THEOREM 3.1 62

Substituting the horizontal H(N, Y ) and vertical V (N, Y ) strategic

thresholds from (2.25) in the last inequality, we obtain

y − x ≥ V (N, Y )−H(N, Y )− αY
11 − αN

12.

Hence,

y − x ≥ Ze
2(N, Y ),

where Ze
2(N, Y ) is as given in the statement of Theorem 3.10.

Theorem 3.11. Assume that β1 = 1 and β2 = 1. The envy cohesive

strategy Se = (N,N) is an envy Nash Equilibrium if and only if (x, y) ∈
N e

s (N,N), where the envy Nash domain N e
s (N,N) is given by

N e
s (N,N) = {(x, y) ∈ R2 : Ze

L(N,N) ≤ y − x ≤ Ze
R(N,N)},

the left envy threshold Ze
L(N,N) is given by

Ze
L(N,N) = H(N,N)− V (N,N)− αY

22 + αY
21,

the right envy threshold Ze
R(N,N) is given by

Ze
R(N,N) = H(N,N)− V (N,N) + αY

11 − αY
12,

the horizontal H(N,N) and vertical V (N,N) strategic thresholds of

(N,N) strategy are as given in (2.29).

Proof. The cohesive envy strategy Se = (N,N) is Nash Equilibrium if

and only if the following inequalities hold

U1(N ; 0, 0, 1) ≥ U1(Y ; 1, 0, 1) and (3.40)

U2(N ; 0, 0, 1) ≥ U2(Y ; 0, 1, 1).

Substituting the envy utility functions from (3.24) and (3.23) in the

first inequality of (3.40), we obtain

(ωN
1 − ωN

2 ) + αN
11(n1 − 0− 1) + αN

12(n2 − 0)

−αN
22(n2 − 0− 1)− αN

21(n1 − 0) ≥ (ωY
1 − ωY

2 )

αY
11(1− 1) + αY

12(0)− αY
22(0− 1)− αY

21(1).
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Rearrange the above inequality, we get

(ωN
1 − ωN

2 )− (ωY
1 − ωY

2 ) ≥ αY
22 − αY

21 + αN
21(n1)

−αN
11(n1 − 1)− αN

12(n2) + αN
22(n2 − 1).

By simplifying the previous inequality using the definition of horizontal

and vertical preferences x and y given in (2.8), we get

y − x ≥ −αN
11(n1 − 1)− αN

12(n2) + αN
22(n2 − 1)

+αN
21(n1) + αY

22 − αY
21. (3.41)

Substituting the horizontal H(N,N) and vertical V (N,N) strategic

thresholds from (2.29) in the last inequality, we obtain

y − x ≥ H(N,N)− V (N,N)− αY
22 + αY

21.

Hence,

x− y ≥ Ze
L(N,N), (3.42)

where Ze
L(N,N) is as given in the statement of Theorem 3.11.

Similarly, we substitute the envy utility functions from (3.26) and

(3.25) in the second inequality of (3.40), we obtain

(ωN
2 − ωN

1 ) + αN
22(n2 − 0− 1) + αN

21(n1 − 0)

−αN
11(n1 − 0− 1)− αN

12(n2 − 0) ≥ (ωY
2 − ωY

1 )

+αY
22(1− 1) + αY

21(0)− αY
11(0− 1)− αY

12(1).

Rearrange the above inequality, we get

(ωN
2 − ωN

1 )− (ωY
2 − ωY

1 ) ≥ αY
11 − αY

12

−αN
22(n2 − 1)− αN

21n1 + αN
11(n1 − 1) + αN

12n2.

By simplifying the previous inequality using the definition of horizontal

and vertical preferences x and y given in (2.8), we get

x− y ≥ −αN
22(n2 − 1)− αN

21n1 + αN
11(n1 − 1)

+αN
12n2 + αY

11 − αY
12. (3.43)
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Substituting the horizontal H(N,N) and vertical V (N,N) strategic

thresholds from (2.29) in the last inequality, we obtain

y − x ≤ H(N,N)− V (N,N) + αY
11 − αY

12.

Hence,

y − x ≤ Ze
R(N,N), (3.44)

where Ze
R(N,N) is as given in the statement of Theorem 3.11. Com-

bining inequalities (3.44) and (3.42), we get

Ze
L(N,N) ≤ y − x ≤ Ze

R(N,N).

Lemma 3.12. Assume that β1 = 1 and β2 = 1. A necessary condition

for the envy cohesive strategy Se = (N,N) to be envy Nash Equilibrium

is

αY
12 + αY

21 ≥ αY
11 + αY

22.

Proof. Using Theorem 3.11 , if Se = (N,N) is an envy Nash Equilib-

rium then one can arrange inequalities (3.41) and (3.43) to get

x ≥ −αN
22(n2 − 1)− αN

21n1 + αN
11(n1 − 1) + αN

12n2 + αY
11 − αY

12 + y,

y ≥ −αN
11(n1 − 1)− αN

12n2 + αN
22(n2 − 1) + αN

21n1 + αY
22 − αY

21 + x.

The last two inequalities simplify to

x ≥ −������
αN
22(n2 − 1)−��

��
αN
21n1 +������

αN
11(n1 − 1) +��

��
αN
12n2

+αY
11 − αY

12,−������
αN
11(n1 − 1)����−αN

12n2 +�
���

αN
21n1

+������
αN
22(n2 − 1) + αY

22 − αY
21,

and

y ≥ −������
αN
11(n1 − 1)����−αN

12n2 +������
αN
22(n2 − 1) +��

��
αN
21n1

+αY
22 − αY

21 −������
αN
22(n2 − 1)−�

���
αN
21n1 +������

αN
11(n1 − 1)

+�
���

αN
12n2 + αY

11 − αY
12.
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Simplifying the last two inequalities, we get

0 ≥ αY
22 − αY

21 + αY
11 − αY

12.

Hence,

αY
21 + αY

12 ≥ αY
22 + αY

11.

Hence, the last condition means that players of type ti prefer more

to be with players of type tj deciding Y rather being together deciding

Y . This is necessary condition for the strategy Se = (N,N) to be envy

Nash Equilibrium, where i 6= j ∈ {1, 2}. The condition agrees with the

result of Lemma 3.5.



Conclusions

We have presented an envy behavioral game theoretical model for two

homogeneous types of players. As well as, we have characterized all

envy strategies that form Nash equilibria and determined the corre-

sponding envy Nash domains for each type of players.And we have com-

pared between the Nash domains and the envy Nash domains. Then,

we have studied the geometric envy tilings and showed that there are

1024 combinatorial classes of envy decision tilings, 256 of them are be-

ing structurally stable while 768 have bifurcation. Moreover, we have

stated some conditions for which the disparate envy strategic set is a

Nash Equilibrium. Finally, we have studied the special case for Theo-

rem 3.1 when the envy parameters β1 = 1 and β2 = 1.
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